

Firefox Test Engineering

Hello! Welcome to Firefox Test Engineering [https://wiki.mozilla.org/TestEngineering], an informal
introduction to how to work with our group.

If you’re a new contributor or new employee, you can start out by reading the
New Contributor Guide. If you’re already a contributor, you can find
generally useful info, such as style guides, in the Reference.

The original template used for this guide is based off of the excellent Mozilla WebDev bootcamp [https://mozweb.readthedocs.io/]. It is maintained in a
GitHub repository [https://github.com/mozilla/firefox-test-engineering/]. Feel free to send pull requests if you see something that could be improved.

	New Contributor Guide
	About the Firefox Test Engineering Team

	Finding a Project

	Test Automation Process

	Accounts

	Limited Access Accounts

	Software and Tools

	New Employee Guide
	Continuous Integration

	Reference
	Git and GitHub

	Python Style Guide

	Common Conventions

	Testing

	Test Results in ActiveData

	Test Results in Treeherder

	PyPOM

	Continuous Integration

	IRC Bot

	Glossary

	Resources
	Videos

New Contributor Guide

First things first: Welcome to Mozilla! We’re glad to have you here, whether
you’re considering volunteering as a contributor or are employed by Mozilla.

Our goal here is to get you up and running to contribute as a test engineer. This guide attempts to be generic enough to be
useful to most Firefox Test Engineering projects, but some details (especially around
software you need installed) might vary among projects.

Baseline requirements include:

	some coding experience, Python and Selenium WebDriver are used most often

	a basic understanding of GitHub

	a willingness to learn!

Let’s get started!

	About the Firefox Test Engineering Team
	How to Talk to Us

	Find a Mentor!

	Turn on the Firehose

	Finding a Project
	Getting Set Up

	Find a Mentor

	How to Contribute

	Test Automation Process
	Finding a Bug or GitHub Issue

	Working on the Bug/Issue

	Mobile

	Next Steps

	Accounts
	GitHub

	Bugzilla

	Limited Access Accounts
	fx-test-pubkeys

	Amazon Web Services (AWS)

	LastPass

	Jenkins

	TestRail

	Software and Tools
	Operating Systems: Windows, Linux, or macOS/OS X?

	Git

	Load-Testing Tools

New Employee Guide

Welcome to the New Employee Guide - hopefully you’ve already gone through, or are familiar with tools, accounts, processes, etc. in our New Contributor Guide. An additional resource to familiarize yourself with is our Firefox Test Engineering [https://mana.mozilla.org/wiki/display/TestEngineering] space on Mana.

	Continuous Integration
	Production

	Sandbox, aka “Dev Jenkins”

	Ops-QA Pipeline

	Build Notifications

About the Firefox Test Engineering Team

The Firefox Test Engineering team oversees the test automation, infrastructure, and manual testing for all of Firefox’s services, sites, and apps that are external to the core browsers (and in some cases within the browsers as well).
Our mission is to provide testing and tools to positively impact the quality of Mozilla websites and services.

How to Talk to Us

There are a few channels of communication for our group:

	The #fx-test channel on irc.mozilla.org [https://wiki.mozilla.org/IRC].

	The firefox-test-engineering@mozilla.com Google Group/mailing list [https://groups.google.com/a/mozilla.com/forum/#!aboutgroup/firefox-test-engineering].

	More details about our team can be found on the Firefox Test Engineering page on QMO [https://quality.mozilla.org/teams/test-engineering/].

If you ever have a question, regardless of how difficult it is, you can share
it on those channels and someone should help you out. Don’t be afraid to ask
questions! You’re trying to help us, so it’s only fair that we try to help you
in return.

Find a Mentor!

It’s also a good idea to find someone to mentor you as a new contributor.
Having someone you can personally ask for help from is incredibly helpful in
finding your way around.

If you’re a new employee, your mentor may be your manager, or it may be a
coworker. If you’re a volunteer, ask someone who works on the project you want
to contribute to; if they cannot mentor you themselves, they should be able
to direct you to someone who can.

Turn on the Firehose

We are one team, part of a much bigger Mozilla project. Here are some links:

	Newsgroup related to tools at Mozilla: mozilla.tools [https://groups.google.com/forum/#!forum/mozilla.tools]

	Information on testing: mozilla.dev.quality [https://groups.google.com/forum/#!forum/mozilla.dev.quality]

	Project wide notices and meeting announcements: mozilla.dev.planning [https://groups.google.com/forum/#!forum/mozilla.dev.planning]

	Technical discussions regarding the Gecko Platform: mozilla.dev.platform [https://groups.google.com/forum/#!forum/mozilla.dev.platform]

	Keep abreast of the latest status on the entire project: Planet Mozilla [http://planet.mozilla.org]

Finding a Project

Before you can contribute to Mozilla, you need to find a project that you’re
interested in contributing to. We currently maintain a list of
projects [https://servicebook.stage.mozaws.net/info] on Service Book.

You may also browse all of the open GitHub Issues for our projects. The Firefox Test Engineering Dashboard [http://mozilla.github.io/fxtest-dashboard/#/issues] lists
open Issues, just make sure to find one that no one else is working on.

Getting Set Up

Once you’ve identified the project you want to work on, you should get the
test automation running locally. All projects have (or should have) a README
file in their source tree that either describes this process or links to
documentation that does. If you haven’t already, you will want to review the New Contributor Guide [http://firefox-test-engineering.readthedocs.io/en/latest/guide/index.html].

Find a Mentor

You may also find it useful to find someone who is working on or responsible
for the project you want to contribute to and asking if they can help you find
a task to work on and answer any other questions you have. Generally
speaking, the project page should have this information. If it
doesn’t, try looking through the commit log of the source code to see
who has been writing code for the project recently.

How to Contribute

Once you’re set up to work on a project, you’ll have to find a task to work on
and get coding! Each project should have some information on where their tasks
are tracked, generally on Bugzilla [https://bugzilla.mozilla.org] or GitHub Issues which are listed on the Firefox Test Engineering Dashboard [http://mozilla.github.io/fxtest-dashboard/#/issues].
The first step is to find a bug or an Issue that is open for contribution, and
then adding a comment that you plan to work on it.

Test Automation Process

While the details vary, there is a general framework for working on Firefox
Test Engineering test automation projects. This document attempts to describe that process.

Finding a Bug or GitHub Issue

The first step is finding a good bug or GitHub Issue to work on.

	GitHub Issues are written when new tests need to be written, or changes need to be made to fix existing flaky or failing tests. They include a description of the steps and expected results. You can find a comprehensive list of open GitHub Issues for our team on the Firefox Test Engineering Dashboard [https://mozilla.github.io/fxtest-dashboard/#/issues].

	Unclaimed Issues are open and available for anyone to work on. You will know if it is unclaimed by reading the comments and checking if it is already assigned to someone. Make sure to comment on the Issue when you find one that you plan to complete.

	Bugs are written when specific features, tests or fixes are to be implemented. Bugs that are marked as ‘mentored’ are a good place to start as you will have support while learning the project.

	Finding a mentored bug that fits your interests and skill set can be challenging. We recommend going to Bugs Ahoy [https://www.joshmatthews.net/bugsahoy/] to find mentored bugs, filtered by skills or areas of interest. Know that listed bugs will include all Mozilla projects, not just ones within the Firefox Test Engineering team.

	Commenting on a bug is generally a good way to indicate you will work on it. However, some teams prefer that you submit a pull request rather than a comment. Contact the bug author if you have questions.

Working on the Bug/Issue

After claiming a Bug/Issue, you will submit your pull request with your work in a GitHub feature branch.

Any mentors or project owners assigned to it will review your work and give constructive feedback and instructions for any changes that need to be made. After the pull request is completed to satisfaction it will be merged into the project code.

The Bug/Issue will be resolved and closed after a successful code merge.

Git and GitHub

For projects using Git and GitHub, the process can be explained in more detail:

	On GitHub, ensure you have forked the repository [https://help.github.com/articles/fork-a-repo] for your project to your
own account and have added it as a remote [https://help.github.com/articles/about-remote-repositories] to your repository.

	Identify the main development branch for your project. This is usually the
master branch.

	Make sure the current branch is the development branch, and create a new
branch off of it for your feature.

	Start running test automation [https://developer.mozilla.org/en-US/docs/Mozilla/QA/Running_Web_QA_automated_tests] to get familiar with the project.

	Once your work is committed and ready for review, push the branch [https://help.github.com/articles/pushing-to-a-remote] to your
fork on GitHub and submit a pull request [https://help.github.com/articles/using-pull-requests].

	If the project uses Bugzilla for issue tracking, create an attachment
to your issue’s bug pointing at the pull request [https://globau.wordpress.com/2013/10/21/github-pull-requests-and-bugzilla/]. Otherwise, if
you know who should review your change, add a comment to your pull request
with their @Username in it and ask for a review.

See also

	Python Style Guide

	A useful styleguide for Python best practices.

	Git and GitHub

	A short list of tips and tricks for using GitHub.

	GitHub Flow [https://guides.github.com/introduction/flow/]

	A process for branching, reviewing, and merging code that is very similar
to the process above.

Mobile

Mobile platforms such as iOS and Android are also an important part of our testing process. Testing is done on mobile platforms, and there are also mobile-specific tests.

iOS

Currently we use Apple’s XCUITest framework in Swift. The test can be written and executed on
Apple’s XCode App, and you can see some of our examples in the Firefox for iOS [https://github.com/mozilla-mobile/firefox-ios/tree/master/XCUITests] repository. Some of the older
Tests are in KIFTest framework [https://github.com/mozilla-mobile/firefox-ios/tree/master/UITests], but since they use undocumented Apple APIs, and XCUITest framework has been
maturing, we are trying to create new tests in XCUITest framework.

You can learn more about basics of Swift and XCUITest from below websites:

	Apple Developer Site [https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html#//apple_ref/doc/uid/TP40014132-CH13-SW1].

	Swift Language Reference [https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/AboutTheLanguageReference.html].

	UI Testing Cheat Sheet and Examples [http://masilotti.com/ui-testing-cheat-sheet/].

Android

A few of our Android mobile test-automation projects (particularly those written with Selenium WebDriver) use
Appium [http://appium.io/]. For Firefox for Android testing automation that does not involve the testing
of GeckoView, there is a proof-of-concept test environment [https://github.com/npark-mozilla/CG_Mobile_Test] using Appium.

Next Steps

At this point you should have all the information and tools you need to make
your first contribution to Mozilla! Once you’ve submitted your work and gotten
it merged, it’s time to celebrate: you’ve earned it!

As you continue to contribute, you may want to check out the
Reference to find generally useful information for contributors
of all levels.

Good luck!

Accounts

We use a few websites/services/applications to manage our test-automation and infrastructure code, bugs, test cases, etc., and while it is possible to
get by without signing up for these sites, it’s strongly recommended that
you create accounts on these websites.

GitHub

Many Firefox Test Engineering projects are hosted on GitHub [https://github.com/]. GitHub provides hosting for our
source code, as well as tools we use for collaboration and code review. GitHub
is based on Git [https://git-scm.com/], a distributed version control system that lets us track the
changes we make to our code.

Once you’ve created a GitHub account [https://github.com/join], you can check out the GitHub help site [https://help.github.com/]
for guides on the basics of using Git and GitHub.

See also

	Mozilla Services on GitHub [https://github.com/mozilla-services/]

	Mozilla Services’ organization account on GitHub.

	Mozilla on GitHub [https://github.com/mozilla/]

	Mozilla’s organization account on GitHub.

Bugzilla

Bugzilla [https://bugzilla.mozilla.org/] is the issue-tracking system that the entire Mozilla Project uses.
Many of our projects use Bugzilla to keep track of any planned
changes to or bugs in our projects.

As a new contributor, Bugzilla is a useful tool for finding known issues that
you can help fix or finding planned work you want to take on. In order to
assign a bug to yourself or to post a comment on a bug, you’ll need to create
a Bugzilla account. An account also allows you to “CC” yourself on bugs that
you are interested in, so that you receive emails when those bugs are changed.

After you’ve been using Bugzilla for a while as a community member,
it’s worthwhile applying for expanded permissions. The editbugs
permission allows you to assign bugs to yourself and resolve them, for
example. See the Bugzilla Permissions Page [https://bugzilla.mozilla.org/page.cgi?id=get_permissions.html] for details. Note that
new employees get this permission automatically; there’s no need to ask for it.

Note

It’s highly recommended to add your IRC nickname to your real name
within Bugzilla to make it easy for others to auto-complete your name.

The standard format is to follow your real name with your IRC name,
preceeded by a colon, surrounded by square brackets. For example:
Cave Johnson [:withthelemons].

Limited Access Accounts

Our team also uses a number of services which are accessible only with special accounts and/or permissions. If you’re under an NDA [https://wiki.mozilla.org/NDA] you may ask your mentor or manager for access.

fx-test-pubkeys

Used to keep our public keys, which we use for access control/authentication in our AWS’ EC2 environments/instances. Please follow the instructions at https://github.com/mozilla-services/fx-test-pubkeys to generate and upload yours.

Amazon Web Services (AWS)

AWS is currently used for much of our server and infrastructure testing. In the future it will likely hold a lot more of our test automation.

You will very likely, at some point (sooner, rather than later) need a Mozilla-privileged AWS account. Please follow these instructions on Mana [https://mana.mozilla.org/wiki/display/SVCOPS/Requesting+A+Dev+IAM+account+from+Cloud+Operations] to get one.

LastPass

We use LastPass to securely share miscellaneous credentials (usernames/passwords/API keys). Please follow the instructions https://mana.mozilla.org/wiki/display/TestEngineering/LastPass to request and use an account with your Mozilla email address.

Jenkins

Jenkins is used for running our test automation. It is in the process of being moved into AWS.

TestRail

TestRail [https://wiki.mozilla.org/TestEngineering/Testrail] is being set up for use as a test case manager. In the future it will be more accessible and visible to community members.

Software and Tools

The software you’ll need to download and install on your computer in order to
contribute varies between projects; please refer to the documentation for the
project you want to contribute to for details.

The following information is a generic description of software or tools that
you’ll most likely need regardless of the project you work on.

Operating Systems: Windows, Linux, or macOS/OS X?

Generally speaking, automation and test tools need to run on the
platforms that are being tested. Linux and Mac are often used as
development environments because the tooling is much more
comprehensive. If you are a Windows user, you may want to use a
program like VirtualBox [https://www.virtualbox.org/] to create a virtual machine running a
Linux-based operating system. The rest of this guide assumes you are
using macOS/OS X or a Linux-based operating system.

If you are running macOS/OS X, most of the software mentioned here can be
installed using the Homebrew [http://brew.sh/] package manager.

Git

Git [https://git-scm.com/] is a distributed version control system. It tracks the history of changes
we make to our code, which allows us to see how the code has changed over time.
Git also makes it very easy for multiple people to work on the same code at the
same time and merge their changes together at the end.

If you are a contributor who is completely new to distributed version
control systems, you might enjoy stepping through some or all of this
fun and easy tutorial [https://try.github.io/levels/1/challenges/1].

See also

	help.github.com [https://help.github.com/]

	A great guide to getting started with Git and GitHub, which hosts most of
our Git repositories.

	GitHub for Windows [https://windows.github.com/]

	A Windows program for interacting with GitHub as an alternative to using
Git in a terminal. Useful if you are not used to using a terminal yet.

	GitHub for Mac [https://mac.github.com/]

	A Mac OS X program for interacting with GitHub as an alternative to using
Git in a terminal. Useful if you are not used to using a terminal yet.

Load-Testing Tools

Molotov [https://github.com/loads/molotov] is used for writing and running load tests.

Ardere [https://github.com/loads/ardere] is another tool (which replaces loads-broker [https://github.com/loads/loads-broker]) to run load tests at scale/distributed.

Continuous Integration

Production

Our production Jenkins instance is available at
https://qa-master.fxtest.jenkins.stage.mozaws.net/ and access is restricted according to
this documentation [https://mana.mozilla.org/wiki/display/TestEngineering/qa-master.fxtest.jenkins.stage.mozaws.net].

Sandbox, aka “Dev Jenkins”

Our sandbox Jenkins instance is available at
https://qa-preprod-master.fxtest.jenkins.stage.mozaws.net/ and requires a connection to
the Mozilla VPN [https://mana.mozilla.org/wiki/display/IT/Mozilla+VPN]. See the Mozilla VPN documentation [https://mana.mozilla.org/wiki/display/TestEngineering/qa-preprod-master.fxtest.jenkins.stage.mozaws.net]
for further information regarding this instance.

Plugin Updates

	Whomever is able to respond and take action first, files a bug in Cloud Services | FXTest-Infra, cc:ing the rest of the core Jenkins/infra team, assigning the bug to themselves, and checking the “Security” checkbox at the bottom of the bug. Include the Jenkins advisory text, with a link (like https://jenkins.io/security/advisory/2017-04-26/), the name of and link to the affected plugin(s), as well as the version to which you’ve upgraded Jenkins dev. Please use this Bugzilla template [https://bugzilla.mozilla.org/enter_bug.cgi?assigned_to=nobody%40mozilla.org&bug_file_loc=http%3A%2F%2F&bug_ignored=0&bug_severity=critical&bug_status=NEW&cc=ckolos%40mozilla.com&cc=oremj%40mozilla.com&cc=kthiessen%40mozilla.com&cc=stephen.donner%40gmail.com&cc=dave.hunt%40gmail.com&cf_blocking_fennec=---&cf_fx_iteration=---&cf_fx_points=---&cf_status_firefox55=---&cf_status_firefox56=---&cf_status_firefox57=---&cf_status_firefox_esr52=---&cf_tracking_firefox55=---&cf_tracking_firefox56=---&cf_tracking_firefox57=---&cf_tracking_firefox_esr52=---&cf_tracking_firefox_relnote=---&component=FXTest-infra&contenttypemethod=autodetect&contenttypeselection=text%2Fplain&defined_groups=1&flag_type-37=X&flag_type-4=X&flag_type-5=X&flag_type-607=X&flag_type-708=X&flag_type-721=X&flag_type-737=X&flag_type-781=X&flag_type-787=X&flag_type-800=X&flag_type-803=X&flag_type-846=X&flag_type-864=X&flag_type-914=X&flag_type-916=X&form_name=enter_bug&groups=cloud-services-security&maketemplate=Remember%20values%20as%20bookmarkable%20template&op_sys=Unspecified&priority=--&product=Cloud%20Services&qa_contact=rpappalardo%40mozilla.com&rep_platform=Unspecified&target_milestone=---&version=unspecified], to file.

	After filing, it’s time to upgrade the plugin(s):

	Update Jenkins dev:
* Log in to the Jenkins dev instance
* Click on “Manage Jenkins” on the left
* Click on “Prepare for Shutdown”
* Click on “Manage Plugins”
* Click the “Check Now” button
* Click the checkbox(es) next to the affected plugin(s), and click the “Download now and install after restart” button
* Also select the checkbox to “Restart Jenkins when installation is complete and no jobs are running”
* Under “Build Queue”, click the “cancel” link to allow Jenkins to safely restart
* Run the sanity.pipeline job, vet the results, looking for new, related failures
* Once the upgrades have completed on dev, resolve the Bugzilla bug as fixed

	Kick off the “run all builds” test job

	Carefully vet the results

	If all goes well, follow the instructions for updating plugins on production Jenkins

Plugin Addition

	Coordinate with and give peers a heads-up that you’re installing a new plugin on dev (and why)

	Install the plugin

	Restart Jenkins

	Run the sanity.pipeline job, and try to ensure there are no new, related failures

	Once you’re comfortable with the results, do the following:

	File a bug using this Bugzilla template [https://bugzilla.mozilla.org/enter_bug.cgi?assigned_to=nobody%40mozilla.org&bug_file_loc=http%3A%2F%2F&bug_ignored=0&bug_severity=critical&bug_status=NEW&cc=ckolos%40mozilla.com&cc=oremj%40mozilla.com&cc=kthiessen%40mozilla.com&cc=stephen.donner%40gmail.com&cc=dave.hunt%40gmail.com&cf_blocking_fennec=---&cf_fx_iteration=---&cf_fx_points=---&cf_status_firefox55=---&cf_status_firefox56=---&cf_status_firefox57=---&cf_status_firefox_esr52=---&cf_tracking_firefox55=---&cf_tracking_firefox56=---&cf_tracking_firefox57=---&cf_tracking_firefox_esr52=---&cf_tracking_firefox_relnote=---&component=FXTest-infra&contenttypemethod=autodetect&contenttypeselection=text%2Fplain&defined_groups=1&flag_type-37=X&flag_type-4=X&flag_type-5=X&flag_type-607=X&flag_type-708=X&flag_type-721=X&flag_type-737=X&flag_type-781=X&flag_type-787=X&flag_type-800=X&flag_type-803=X&flag_type-846=X&flag_type-864=X&flag_type-914=X&flag_type-916=X&form_name=enter_bug&groups=cloud-services-security&maketemplate=Remember%20values%20as%20bookmarkable%20template&op_sys=Unspecified&priority=--&product=Cloud%20Services&qa_contact=rpappalardo%40mozilla.com&rep_platform=Unspecified&target_milestone=---&version=unspecified], requesting the plugin(s) installation. Include the following info:
* the plugin name(s), version(s), link(s) on https://plugins.jenkins.io/
* mention that it’s been successfully tested on the dev instance.

	Once Ops installs the plugin on Prod, make sure to:
* test affected job(s), and
* ping back in the Production-update bug with the appropriate resolution/verification data

Ops-QA Pipeline

The current flow for a project integrated into the Cloud Ops deploy pipeline is as follows:

	A tagged or pushed build from dev deploys to staging

	Cloud Ops’ deploy-pipeline script calls qaTest("kinto", "stage"), which remotely runs the project’s corresponding staging (“stage”) test job, e.g. kinto.stage, in our Jenkins instance

	If our tests pass (returning exit code/return status of “0”), and after manual confirmation from Ops, the build gets promoted and pushed to production

Getting a project’s tests into the deploy pipeline:

	A suggestion is to have your project build and run tests in Jenkins, from a Docker image

	Create a Jenkins job with the following syntax: project.test_env (e.g. kinto.stage), using the Pipeline from SCM option, and pointing to the Jenkinsfile

	Once your project runs and passes in Jenkins:

	File a bug (example: bug 1384404 [https://bugzilla.mozilla.org/show_bug.cgi?id=1384404]), in the most-appropriate component for your project, under the Cloud Services product, requesting Ops enable your jobs in their pipeline

	Next, from Ops’ side, there is a qaTest.groovy file [https://github.com/mozilla-services/cloudops-deployment/blob/c6a09fa1a62d1cddf3a3b560e92aca55a497d0d4/libs/pipeline/vars/qaTest.groovy#L13] which calls run_jenkins_job [https://github.com/mozilla-services/cloudops-deployment/blob/9626ef442346913733b2f14e11d490750d481411/bin/run_jenkins_job], which, in turn, authenticates with QA (prod) Jenkins, and will run /job/${project}.${envName}

Build Notifications

Notifications can differ between projects, however typically whenever a build fails a notification is sent to the fte-ci [https://groups.google.com/a/mozilla.com/forum/#!forum/fte-ci] group. When the result of a build changes, a notification is sent to the #fx-test-alerts IRC channel on irc.mozilla.org.

Reference

This is where all the useful information goes that doesn’t fit into the
New Contributor Guide.

	Git and GitHub

	Python Style Guide

	Common Conventions

	Testing

	Test Results in ActiveData

	Test Results in Treeherder

	PyPOM

	Continuous Integration

	IRC Bot

	Glossary

Git and GitHub

The sections below describe some Firefox Test Engineering best practices for
using Git and GitHub. For more general information on Git here is a link to
Good Resources [https://help.github.com/articles/good-resources-for-learning-git-and-github/] for Learning Git and GitHub.

Issues

You can find an issue to work on by going to the
Firefox Test Engineering Dashboard [https://mozilla.github.io/fxtest-dashboard/#/issues]. Any unclaimed Issue is available to you
to work on. You can find out more about our process in the New Contributor Guide.

Commit Messages

See Tim Pope’s blog post on Git commit messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

Rebasing Commits

While projects vary in their opinions on whether merge commits should be
avoided or not, it is generally a good idea to rebase a feature branch before
submitting a pull request.

Rebasing allows you to alter a series of commits, changing the history of your
repository. Typically you rebase a branch to:

	Combine smaller commits made during development into larger, logical commits
that are easier to understand and review, or split up larger commits into
smaller commits for the same purpose.

	Alter commit messages of previous commits.

	Move a branch to be based on the latest commit of the branch you want to
merge into and resolve any conflicts that occur.

If you’re not familiar with rebasing, you can start with this short
guide [https://help.github.com/articles/using-git-rebase] on how to use the git rebase command.

These changes all make the code review process as well as the merging process
easier, and are recommended for all pull requests.

Warning

Rebasing code that has already been pushed to a public or shared
repository makes it very difficult for others to update their
local repositories. Only rebase branches that you are absolutely
sure no one else is using, such as feature branches on your
personal fork.

Owners and the Mozilla GitHub Organization

See the GitHub page on wiki.mozilla.org [https://wiki.mozilla.org/Github]
for information on the Mozilla organization on GitHub or anything that requires
owner access for the organization.

Python Style Guide

This document is a brief set of guidelines for writing Python code at
Mozilla. Individual projects may override these rules; make sure you
know the standards for your project!

General Guidelines

	Follow PEP 8 [https://www.python.org/dev/peps/pep-0008/].

	Check your code against a linting tool. flake8 [https://flake8.readthedocs.io/] is highly recommended for
this.

Import Statements

We expand on PEP 8 [https://www.python.org/dev/peps/pep-0008/]’s suggestions for import statements. These greatly improve
one’s ability to ascertain what is and isn’t available in a given file.

Import one module per import statement:

import os
import sys

not:

import os, sys

Separate imports into groups with a line of whitespace: standard library;
(if a web app) Django or other framework; third-party; and local imports:

import os
import sys

from django.conf import settings

import pyquery

from myapp import models, views

Alphabetize your imports; it will make your code easier to scan. See how
terrible this is:

import cows
import kittens
import bears

A simple sort:

import bears
import cows
import kittens

Imports on top, from imports below:

import x
import y
import z
from bears import pandas
from xylophone import bar
from zoos import lions

That’s loads easier to read than:

from bears import pandas
import x
from xylophone import bar
import y
import z
from zoos import lions

Lastly, when importing things into your namespace from a package use an
alphabetized CONSTANT, Class, var order:

from models import DATE, TIME, Dog, Kitteh, upload_pets

If possible though, it may be easier to import the entire package, especially
for methods as it help answers the question, “where did you come from?”

Bad:

from foo import you

def my_code():
 you() # wait, is this defined in this file?

Good:

import foo

def my_code():
 foo.you() # oh you...

Whitespace Matters

	Use 4 spaces, not 2—it increases legibility considerably.

	Never use tabs—history has shown that we cannot handle them.

Use single quotes unless double (or triple) quotes would be an improvement:

'this is good'

'this\'s bad'

"this's good"

"this is inconsistent, but ok"

"""this's sometimes "necessary"."""

'''nobody really does this'''

To continue a new line use a () not \.

Indenting code should be done in one of two ways: a hanging indent, or 4-space
indent on the next line.

Good, using hanging indent. Note that the next line is lined up with the
previous line delimiter:

log.msg('Something long log message and some vars: {0}, {1}'
 .format(variable_a, variable_b))

Good using 4 spaces:

accounts = PaymentAccounts.objects.filter(
 accounts__provider__type=2,
 something_else=True
)

A more compact alternative.
accounts = PaymentAccounts.objects.filter(
 accounts__provider__type=2, something_else=True)

accounts = (PaymentAccounts.objects
 .filter(accounts__provider__type=2)
 .exclude(something_else=False)
)

Remember that comprehensibility is the goal here. If following one of the rules
above would result in less readable code, don’t follow it!

Common Conventions

The following are some hopefully-helpful pointers to common conventions we’re using across most automation projects. Their adoption aims to make automation easily repeatable, runnable, more reliable, and with clearer output. This list is neither exhaustive nor authoritative, but we strive to keep it as up-to-date and relevant as possible.

Code Coverage

Purpose: Particularly relevant for our Python packages (which are used themselves in other testing projects and development repos), quite a few of our projects have implemented Coveralls [https://coveralls.io] code-coverage/analysis tool.

For a real-world example of code removal that Coveralls caught, see https://github.com/mozilla/FoxPuppet/pull/162#issuecomment-373110700

Dependencies + Virtual Environments

pyup

Purpose: pyup.io [https://pyup.io] helps us manage updating our dependencies and requirements.

There are a few scenarios for its use:

	Test suite lives in a separate directory within project repo
- Example [https://github.com/mozilla-services/socorro/blob/3232f5e420fd7e5b80fa456c8f4c583b58ef1fbb/.pyup.yml] from Socorro
- Example [https://github.com/mozilla-services/go-bouncer/blob/86e9b428eee25e1d708935397da884f99f9be051/.pyup.yml] from Bouncer

	Self-contained test suite
- Example [https://github.com/mozilla/mozillians-tests/blob/44f8d87560576549e801493dfb4069723d2d1506/.pyup.yml] from Mozillians

pipenv

Purpose: We use pipenv [https://docs.pipenv.org/] for managing virtual environments and installing dependencies.

Typically, we:

	Pin pipenv with pipenv.txt (Example) [https://github.com/mozilla/stubattribution-tests/blob/730551c564833ce6488fb181f7fb08405928124e/pipenv.txt]

	Install directly from the Pipfile (Example) [https://github.com/mozilla/stubattribution-tests/blob/730551c564833ce6488fb181f7fb08405928124e/Dockerfile#L5]

	Ignore generating and using the Pipfile.lock (Example) [https://github.com/Kinto/kinto-integration-tests/blob/67239fe202a94fd9dd6aec664497f8c8343c7e46/Dockerfile#L6]

tox

Purpose: We use tox [https://tox.readthedocs.io] to run tests using multiple Python versions, as it automagically takes care of their respective virtual environments.

Docker

Purpose: We use Docker [https://www.docker.com] to help ensure consistent, portable builds, with dependency/environment control.

In most cases, we build our Docker image directly from its master branch in GitHub, in any one (or combination) of the following: Travis CI, Circle CI, and Jenkins.

Typically, we use two (2) main files, for Docker:

	Dockerfile

	.dockerignore

For both of these files, see the official docs at https://docs.docker.com/engine/reference/builder

Jenkins/Jenkinsfile

We prefer tests running in Jenkins to use a Jenkinsfile (and Docker, as much as possible).

Linting

Purpose: PEP8 [https://www.python.org/dev/peps/pep-0008/] and flake8 [http://flake8.pycqa.org]. Other considerations for specific linting are:

	flake8-isort [https://pypi.python.org/pypi/flake8-isort]

	flake8-docstrings [https://pypi.python.org/pypi/flake8-docstrings]

	pylint [https://www.pylint.org/]

Travis CI

Purpose: We use Travis CI [https://www.travis-ci.org/] for linting pull requests/commits.

Testing

Testing is a very important part of the development process. It allows us to
verify the functionality of our projects as well as judge the quality of our
work.

At Mozilla, we have multiple ways of testing our code, including:

	Unit tests and integration tests, which are automated tests that verify that
pieces of code work as expected.

	End-to-end tests, automated tests which check the functionality of a project
as a whole. For example, simulating clicks in a web browser to test how a
site functions.

	Manual testing, which is performed by a human and involves verifying features
work as expected and exploratory tests.

Assessing and Managing Risk

The end goal of testing is to manage the risk of something going wrong with
your project. To this end, one of the first steps you should take is to assess
the risk of each area of your project.

More concretely, some parts of your project are going to be more likely to fail
than others. Also, some parts of your project are more important than others,
and it may be more harmful for them to fail than less important parts.

A risk assessment lists out the different parts of your project (such as
certain webpages or parts of an API) and ranks them based on their importance.
For example, a news site rank being able to read existing articles as more
important than being able to submit new articles. Ranking these parts allows
you to make decisions about which to test more and what kind of tests to run.

Some projects rely on Travis CI [https://travis-ci.org/] for executing their tests.

For Django projects, these tests live within the tests module of each
included Django application. For Node-based projects, they normally live in
a directory named test or tests at the root of the repository. Refer to
your project’s documentation for more details.

End-to-End Tests

End-to-end tests simulates how your project will be used by users and verifies
that it behaves as expected. This is most commonly applied to websites, where
we use tools like Selenium [http://www.seleniumhq.org/projects/webdriver/] to simulate users interacting with the website.

For many sites, these tests are written by WebQA contributors and run against
the various server environments.

Manual Testing

Manual testing is good old-fashioned human-powered testing, where a living,
breathing human uses your project and checks for any errors. Typically this is
either for verifying that a new feature works as expected, or for free-form
exploratory testing.

In addition to writing automated tests, you almost certainly should be manually
testing any changes you make to a project.

Testing Tools

The following is a non-exhaustive, possibly-out-of-date list of tools and
libraries that may aid you in testing your projects.

General

	Jenkins [https://jenkins.io/] is a continuous integration server that builds and/or tests software
projects continuously.

	Travis CI [https://travis-ci.org/] is a hosted continuous integration service that integrates with
Github.

	Selenium [http://www.seleniumhq.org/projects/webdriver/] is a tool for automating browsers, often for testing purposes.

Python

	pytest [http://pytest.org] is a highly recommended testing library for Python, with a great
plugin ecosystem. Some common plugins we’re using include

	pytest-testrail [https://pypi.python.org/pypi/pytest-testrail] for sending test run details to our Testrail server

	pytest-bugzilla-notifier [https://pypi.python.org/pypi/pytest-bugzilla-notifier/0.1.2] for sending test summaries to Bugzilla tickets

	factory-boy [https://factoryboy.readthedocs.io/] replaces test fixtures with factories that generate test
objects easily. It integrates with the Django ORM to generate model instances
with a very conveninent syntax.

	Mock [http://www.voidspace.org.uk/python/mock/] is one of the most popular libraries for replacing parts of the system
you’re testing with mock objects and asserting things about their behavior.

Node / JavaScript

	Mocha [http://visionmedia.github.io/mocha/] is a framework for running tests on node.js and in the browser.

	Chai [http://chaijs.com/] is an assertion library with many interfaces to accomodate different
testing styles.

	Karma [http://karma-runner.github.io] allows you to execute JavaScript code in multiple real browsers.

Test Results in ActiveData

Our automated test results are publicly accessible via
ActiveData [https://wiki.mozilla.org/Auto-tools/Projects/ActiveData], which
allows us to determine areas the need attention. For example, we might want to
identify tests that take the longest to run, or tests that fail most often. We
can also use ActiveData to see if changing the version of Python or a package
has an effect on the duration or outcome of the tests.

Most of our test automation is based on pytest, and in order to these results
into ActiveData we need to generate structured logs and upload them to an
Amazon S3 bucket. ActiveData scans this bucket, ingests the logs, and the
results are then available for querying.

Structured Logs

Many test suites at Mozilla use
mozlog [http://mozbase.readthedocs.io/en/latest/mozlog.html] to generate
structured logs. As ActiveData is already familiar with this format, it makes
sense to reuse it for our test results. To achieve this, mozlog includes a
simple pytest plugin named
pytest-mozlog [https://dxr.mozilla.org/mozilla-central/source/testing/mozbase/mozlog/mozlog/pytest_mozlog/plugin.py].
When mozlog is installed, additional command line options are added to pytest
for generating logs in the various available formats. For example, to generate
a structured log:

pytest --log-raw=raw.log

Other formats are available, however the raw format is the only one that
ActiveData will be able to process. Here’s an example of the output:

{"pid": 92739, "run_info": {"Python": "2.7.10", "Plugins": {"mozlog": "3.4", "xdist": "1.15.0", "base-url": "1.3.0", "metadata": "1.3.0", "html": "1.14.2"}, "Packages": {"pytest": "3.0.6", "pluggy": "0.4.0", "py": "1.4.32"}, "Platform": "Darwin-16.4.0-x86_64-i386-64bit"}, "action": "suite_start", "tests": ["test_foo.py::test_foo", "test_bar.py::test_bar"], "component": "pytest", "source": "pytest", "time": 1489585066381, "thread": "MainThread"}
{"pid": 92739, "test": "test_foo.py::test_foo", "action": "test_start", "component": "pytest", "source": "pytest", "time": 1489585071631, "thread": "MainThread"}
{"pid": 92739, "test": "test_bar.py::test_bar", "action": "test_start", "component": "pytest", "source": "pytest", "time": 1489585071631, "thread": "MainThread"}
{"status": "PASS", "pid": 92739, "test": "test_foo.py::test_foo", "action": "test_end", "component": "pytest", "source": "pytest", "time": 1489585072217, "thread": "MainThread"}
{"status": "PASS", "pid": 92739, "test": "test_foo.py::test_bar", "action": "test_end", "component": "pytest", "source": "pytest", "time": 1489585072219, "thread": "MainThread"}
{"pid": 92739, "action": "suite_end", "component": "pytest", "source": "pytest", "time": 1489585072594, "thread": "MainThread"}

Metadata

In order to add context to the results we use the
pytest-metadata [https://pypi.python.org/pypi/pytest-metadata/] plugin. This
adds details on the platform, Python binary, pytest packages, and pytest
plugins used in the test session. It also adds environment variables from
several continuous integrations servers, and we use this to associate results
with a specific application under test. All of this data is added to the
run_info in the suite_start message within the structured log.

Querying ActiveData

You can use the
ActiveData Query Tool [https://activedata.allizom.org/tools/query.html] to
run queries and see the responses from ActiveData. The
getting started [https://github.com/klahnakoski/ActiveData/blob/dev/docs/GettingStarted.md]
guide is a good place to start, however let’s explore a couple of examples.

Test Durations

The following query will return the 90th percentile for test duration, grouped
by test name and job:

{
 "from":"fx-test",
 "limit":1000,
 "groupby":["test.full_name"],
 "select":[{
 "aggregate":"percentile",
 "percentile":0.9,
 "value":"result.duration"
 }]
}

You’ll need to sort the results in the client to determine the longest running
tests. Then you may want to do further queries to learn if these tests are
longer against different environments, or across the board. This might
highlight tests that are doing too much, or at least slowing down the feedback
loop.

Failing Tests

The following query will return the total number of times each test has failed.

{
 "from":"fx-test",
 "limit":1000,
 "groupby":["test.full_name"],
 "where":{"eq":{"result.ok":false}},
 "select":[{"aggregate":"count"}]
}

Note that this doesn’t distinguish between the various outcomes that evaluate
as a failure, so this is just wherever the outcome does not match the
expectation.

Plotting Results

A useful way to visualize the results from ActiveData is to plot them on a
chart. This can be achieved using a Jupyter Notebook [https://jupyter.org/],
with pandas, NumPy, and matplotlib. If you have Docker [http://docker.com/]
installed then a really quick way to get started is to use the
jupyter/datascience-notebook [https://hub.docker.com/r/jupyter/datascience-notebook/]
image:

$ docker run -it --rm -p 8888:8888 jupyter/datascience-notebook
[I 17:58:11.744 NotebookApp] Writing notebook server cookie secret to /home/jovyan/.local/share/jupyter/runtime/notebook_cookie_secret
[W 17:58:12.747 NotebookApp] WARNING: The notebook server is listening on all IP addresses and not using encryption. This is not recommended.
[I 17:58:12.814 NotebookApp] Serving notebooks from local directory: /home/jovyan/work
[I 17:58:12.814 NotebookApp] 0 active kernels
[I 17:58:12.814 NotebookApp] The Jupyter Notebook is running at: http://[all ip addresses on your system]:8888/?token=[TOKEN]
[I 17:58:12.814 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 17:58:12.824 NotebookApp]

 Copy/paste this URL into your browser when you connect for the first time,
 to login with a token:
 http://localhost:8888/?token=[TOKEN]

Open Jupyter at the URL provided and create a new Notebook with your preferred
Python version.

In the first cell, build your query. The following will return all failing
tests run in the last two weeks by day and outcome, which will allow us to
plot the outcomes on a chart:

query = """{
"from":"fx-test",
"edges":[
 {"value":"result.result","allowNulls":false},
 {
 "value":"result.end_time",
 "allowNulls":false,
 "domain":{
 "type":"time",
 "min":"today-2week",
 "max":"tomorrow",
 "interval":"day"
 }
 }
],
"where":{"and":[
 {"gte":{"result.end_time":{"date":"today-2week"}}},
 {"eq":{"result.ok":false}}
]},
"format":"cube",
"limit":1000
}"""

In the next cell, post the query and retrieve the JSON results:

import requests
data = requests.post('http://activedata.allizom.org/query', data=query).json()

Now we import NumPy and Pandas, and build a DataFrame with a series for each
outcome:

import numpy as np
import pandas as pd

d = {}
i = np.array([d['min'] for d in data['edges'][1]['domain']['partitions']]).astype('datetime64[s]')
for idx, val in enumerate(data['data']['count']):
 result = data['edges'][0]['domain']['partitions'][idx]['value']
 d[result] = pd.Series(val, index=i)
df = pd.DataFrame(d)

Finally, we import Seaborn (for more attractive charts) and plot our line
chart:

import seaborn as sns
sns.set_style('darkgrid')
df.plot.line()

The chart will be displayed in the Jupyter Notebook. It’s now pretty easy to
tweak the query and DataFrame, or try different types of charts.

[image: Test failures by outcome in the past two weeks]

Known Limitations

Unfortunately, mozlog does not currently support Python 3. This means that any
suite that produces structured logs for consumption by ActiveData is required
to run on legacy Python.

Test Results in Treeherder

Treeherder [https://wiki.mozilla.org/EngineeringProductivity/Projects/Treeherder]
is Mozilla’s reporting dashboard for checkins, builds, and test results. Our
automated test results are published to Treeherder via
Pulse [https://wiki.mozilla.org/Auto-tools/Projects/Pulse].

Submitting from Jenkins

To submit results from Jenkins you will need to write your job as a
declarative pipeline [https://jenkins.io/doc/book/pipeline/] using our
fxtest shared library [https://github.com/mozilla/fxtest-jenkins-pipeline].
See the documentation [https://github.com/mozilla/fxtest-jenkins-pipeline#submittotreeherder]
for more information.

Viewing results in Treeherder

To view the results for a particular project, open
Treeherder [https://treeherder.mozilla.org/] and select the appropriate
repository from the menu. Most of our projects will be found within the
‘qa automation tests’ group. You will then see a resultset for each commit to
that repository, and any associated test jobs will be displayed. Click a job to
find the test logs and report. The
Treeherder User Guide [https://treeherder.mozilla.org/userguide.html] may
also be useful.

PyPOM

PyPOM, or Python Page Object Model, is a Python library that provides a base
page object model for use with Selenium functional tests.

PyPOM is a fundamental part of our test automation. Learn more about
PyPOM [http://pypom.readthedocs.io/en/latest/index.html] on their readthedocs page.

Continuous Integration

Production

Our production Jenkins instance is available at
https://qa-master.fxtest.jenkins.stage.mozaws.net/ and access is restricted according to
this documentation [https://mana.mozilla.org/wiki/display/TestEngineering/qa-master.fxtest.jenkins.stage.mozaws.net].

Sandbox, aka “Dev Jenkins”

Our sandbox Jenkins instance is available at
https://qa-preprod-master.fxtest.jenkins.stage.mozaws.net/ and requires a connection to
the Mozilla VPN [https://mana.mozilla.org/wiki/display/IT/Mozilla+VPN]. See the Mozilla VPN documentation [https://mana.mozilla.org/wiki/display/TestEngineering/qa-preprod-master.fxtest.jenkins.stage.mozaws.net]
for further information regarding this instance.

Plugin Updates

	Whomever is able to respond and take action first, files a bug in Cloud Services | FXTest-Infra, cc:ing the rest of the core Jenkins/infra team, assigning the bug to themselves, and checking the “Security” checkbox at the bottom of the bug. Include the Jenkins advisory text, with a link (like https://jenkins.io/security/advisory/2017-04-26/), the name of and link to the affected plugin(s), as well as the version to which you’ve upgraded Jenkins dev. Please use this Bugzilla template [https://bugzilla.mozilla.org/enter_bug.cgi?assigned_to=nobody%40mozilla.org&bug_file_loc=http%3A%2F%2F&bug_ignored=0&bug_severity=critical&bug_status=NEW&cc=ckolos%40mozilla.com&cc=oremj%40mozilla.com&cc=kthiessen%40mozilla.com&cc=stephen.donner%40gmail.com&cc=dave.hunt%40gmail.com&cf_blocking_fennec=---&cf_fx_iteration=---&cf_fx_points=---&cf_status_firefox55=---&cf_status_firefox56=---&cf_status_firefox57=---&cf_status_firefox_esr52=---&cf_tracking_firefox55=---&cf_tracking_firefox56=---&cf_tracking_firefox57=---&cf_tracking_firefox_esr52=---&cf_tracking_firefox_relnote=---&component=FXTest-infra&contenttypemethod=autodetect&contenttypeselection=text%2Fplain&defined_groups=1&flag_type-37=X&flag_type-4=X&flag_type-5=X&flag_type-607=X&flag_type-708=X&flag_type-721=X&flag_type-737=X&flag_type-781=X&flag_type-787=X&flag_type-800=X&flag_type-803=X&flag_type-846=X&flag_type-864=X&flag_type-914=X&flag_type-916=X&form_name=enter_bug&groups=cloud-services-security&maketemplate=Remember%20values%20as%20bookmarkable%20template&op_sys=Unspecified&priority=--&product=Cloud%20Services&qa_contact=rpappalardo%40mozilla.com&rep_platform=Unspecified&target_milestone=---&version=unspecified], to file.

	After filing, it’s time to upgrade the plugin(s):

	Update Jenkins dev:
* Log in to the Jenkins dev instance
* Click on “Manage Jenkins” on the left
* Click on “Prepare for Shutdown”
* Click on “Manage Plugins”
* Click the “Check Now” button
* Click the checkbox(es) next to the affected plugin(s), and click the “Download now and install after restart” button
* Also select the checkbox to “Restart Jenkins when installation is complete and no jobs are running”
* Under “Build Queue”, click the “cancel” link to allow Jenkins to safely restart
* Run the sanity.pipeline job, vet the results, looking for new, related failures
* Once the upgrades have completed on dev, resolve the Bugzilla bug as fixed

	Kick off the “run all builds” test job

	Carefully vet the results

	If all goes well, follow the instructions for updating plugins on production Jenkins

Plugin Addition

	Coordinate with and give peers a heads-up that you’re installing a new plugin on dev (and why)

	Install the plugin

	Restart Jenkins

	Run the sanity.pipeline job, and try to ensure there are no new, related failures

	Once you’re comfortable with the results, do the following:

	File a bug using this Bugzilla template [https://bugzilla.mozilla.org/enter_bug.cgi?assigned_to=nobody%40mozilla.org&bug_file_loc=http%3A%2F%2F&bug_ignored=0&bug_severity=critical&bug_status=NEW&cc=ckolos%40mozilla.com&cc=oremj%40mozilla.com&cc=kthiessen%40mozilla.com&cc=stephen.donner%40gmail.com&cc=dave.hunt%40gmail.com&cf_blocking_fennec=---&cf_fx_iteration=---&cf_fx_points=---&cf_status_firefox55=---&cf_status_firefox56=---&cf_status_firefox57=---&cf_status_firefox_esr52=---&cf_tracking_firefox55=---&cf_tracking_firefox56=---&cf_tracking_firefox57=---&cf_tracking_firefox_esr52=---&cf_tracking_firefox_relnote=---&component=FXTest-infra&contenttypemethod=autodetect&contenttypeselection=text%2Fplain&defined_groups=1&flag_type-37=X&flag_type-4=X&flag_type-5=X&flag_type-607=X&flag_type-708=X&flag_type-721=X&flag_type-737=X&flag_type-781=X&flag_type-787=X&flag_type-800=X&flag_type-803=X&flag_type-846=X&flag_type-864=X&flag_type-914=X&flag_type-916=X&form_name=enter_bug&groups=cloud-services-security&maketemplate=Remember%20values%20as%20bookmarkable%20template&op_sys=Unspecified&priority=--&product=Cloud%20Services&qa_contact=rpappalardo%40mozilla.com&rep_platform=Unspecified&target_milestone=---&version=unspecified], requesting the plugin(s) installation. Include the following info:
* the plugin name(s), version(s), link(s) on https://plugins.jenkins.io/
* mention that it’s been successfully tested on the dev instance.

	Once Ops installs the plugin on Prod, make sure to:
* test affected job(s), and
* ping back in the Production-update bug with the appropriate resolution/verification data

Ops-QA Pipeline

The current flow for a project integrated into the Cloud Ops deploy pipeline is as follows:

	A tagged or pushed build from dev deploys to staging

	Cloud Ops’ deploy-pipeline script calls qaTest("kinto", "stage"), which remotely runs the project’s corresponding staging (“stage”) test job, e.g. kinto.stage, in our Jenkins instance

	If our tests pass (returning exit code/return status of “0”), and after manual confirmation from Ops, the build gets promoted and pushed to production

Getting a project’s tests into the deploy pipeline:

	A suggestion is to have your project build and run tests in Jenkins, from a Docker image

	Create a Jenkins job with the following syntax: project.test_env (e.g. kinto.stage), using the Pipeline from SCM option, and pointing to the Jenkinsfile

	Once your project runs and passes in Jenkins:

	File a bug (example: bug 1384404 [https://bugzilla.mozilla.org/show_bug.cgi?id=1384404]), in the most-appropriate component for your project, under the Cloud Services product, requesting Ops enable your jobs in their pipeline

	Next, from Ops’ side, there is a qaTest.groovy file [https://github.com/mozilla-services/cloudops-deployment/blob/c6a09fa1a62d1cddf3a3b560e92aca55a497d0d4/libs/pipeline/vars/qaTest.groovy#L13] which calls run_jenkins_job [https://github.com/mozilla-services/cloudops-deployment/blob/9626ef442346913733b2f14e11d490750d481411/bin/run_jenkins_job], which, in turn, authenticates with QA (prod) Jenkins, and will run /job/${project}.${envName}

Build Notifications

Notifications can differ between projects, however typically whenever a build fails a notification is sent to the fte-ci [https://groups.google.com/a/mozilla.com/forum/#!forum/fte-ci] group. When the result of a build changes, a notification is sent to the #fx-test-alerts IRC channel on irc.mozilla.org.

IRC Bot

We have a chat bot in our IRC channel providing useful features such as
notifications or new issues, pull requests and pushes to our GitHub
repositories.

The source code [https://github.com/mozilla/fxtestbot/] is available on GitHub, and notifications can be configured
for any repository by following the steps in the documentation [https://github.com/mozilla/fxtestbot/#setting-up-github-webhooks].

Glossary

At Mozilla, we use a lot of special terms that mean specific, non-obvious
things to those who aren’t familiar with them. This
wiki document [https://wiki.mozilla.org/Glossary] attempts to define those
terms.

Resources

Useful resources for further reading and learning.

	Videos

Videos

	Mozilla Onboarding [https://air.mozilla.org/channels/onboarding/] - things that you’ll be using at Mozilla.

	Mozilla QA on YouTube [https://www.youtube.com/channel/UCGMIgnRifGGX0iEmpHpRvkw]

	Mozilla on YouTube [https://www.youtube.com/user/Mozilla/videos]

Index

 _static/ajax-loader.gif

_images/outcomes.png
600

— ERROR
— FAILL
500
400
300
200
100
0 —
03 04 05 06 07 08 09 10 11 12 13 14 15 16
Mar.

2017

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Firefox Test Engineering

 		
 New Contributor Guide

 		
 About the Firefox Test Engineering Team

 		
 How to Talk to Us

 		
 Find a Mentor!

 		
 Turn on the Firehose

 		
 Finding a Project

 		
 Getting Set Up

 		
 Find a Mentor

 		
 How to Contribute

 		
 Test Automation Process

 		
 Finding a Bug or GitHub Issue

 		
 Working on the Bug/Issue

 		
 Mobile

 		
 Next Steps

 		
 Accounts

 		
 GitHub

 		
 Bugzilla

 		
 Limited Access Accounts

 		
 fx-test-pubkeys

 		
 Amazon Web Services (AWS)

 		
 LastPass

 		
 Jenkins

 		
 TestRail

 		
 Software and Tools

 		
 Operating Systems: Windows, Linux, or macOS/OS X?

 		
 Git

 		
 Load-Testing Tools

 		
 New Employee Guide

 		
 Continuous Integration

 		
 Production

 		
 Sandbox, aka “Dev Jenkins”

 		
 Ops-QA Pipeline

 		
 Build Notifications

 		
 Reference

 		
 Git and GitHub

 		
 Issues

 		
 Commit Messages

 		
 Rebasing Commits

 		
 Owners and the Mozilla GitHub Organization

 		
 Python Style Guide

 		
 General Guidelines

 		
 Import Statements

 		
 Whitespace Matters

 		
 Common Conventions

 		
 Code Coverage

 		
 Dependencies + Virtual Environments

 		
 Docker

 		
 Jenkins/Jenkinsfile

 		
 Linting

 		
 Travis CI

 		
 Testing

 		
 Assessing and Managing Risk

 		
 End-to-End Tests

 		
 Manual Testing

 		
 Testing Tools

 		
 Test Results in ActiveData

 		
 Structured Logs

 		
 Metadata

 		
 Querying ActiveData

 		
 Plotting Results

 		
 Known Limitations

 		
 Test Results in Treeherder

 		
 Submitting from Jenkins

 		
 Viewing results in Treeherder

 		
 PyPOM

 		
 Continuous Integration

 		
 Production

 		
 Sandbox, aka “Dev Jenkins”

 		
 Ops-QA Pipeline

 		
 Build Notifications

 		
 IRC Bot

 		
 Glossary

 		
 Resources

 		
 Videos

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

